Purchase Solution

Calculate the derivatives of wave equations

Not what you're looking for?

Ask Custom Question

The equation for a wave moving along a straight wire is: (1) y= 0.5 sin (6 x - 4t)
To look at the motion of the crest, let y = ym= 0.5 m, thus obtaining an equation with only two variables, namely x and t.

a. For y= 0.5, solve for x to get (2) x(t) then take a (partial) derivative of x(t) to get the rate of change of x which is the velocity of the wave.

A separate wave on the same wire is: (3) y= 0.5 sin (6x + 4t)

b. For y= 0.5, solve for x to get (4) x(t) then take a (partial) derivative of x(t) to get the rate of change of x which is the velocity of the wave.

c. From parts a and b, state how you can tell whether a wave is moving toward +x or toward -x direction.

Purchase this Solution

Solution Summary

The derivatives of wave equations are determined. A separate wave on the same wire are determined. With good explanations and calculations, the problems are solved.

Solution Preview

a. In a general equation, y= ym sin (kx - wt), if we let y= ym then ym cancels and we get:
sin (kx - wt) = 1 from which kx - wt = Arcsin 1 and x= (w/k)t + (Pi)/(2k)
In ...

Purchase this Solution


Free BrainMass Quizzes
Probability Quiz

Some questions on probability

Solving quadratic inequalities

This quiz test you on how well you are familiar with solving quadratic inequalities.

Know Your Linear Equations

Each question is a choice-summary multiple choice question that will present you with a linear equation and then make 4 statements about that equation. You must determine which of the 4 statements are true (if any) in regards to the equation.

Multiplying Complex Numbers

This is a short quiz to check your understanding of multiplication of complex numbers in rectangular form.

Geometry - Real Life Application Problems

Understanding of how geometry applies to in real-world contexts